Bootstrap 2-sample mean test for (hyper-)spherical data: Bootstrap 2-sample mean test for (hyper-)spherical data
Description
Bootstrap 2-sample mean test for (hyper-)spherical data.
Usage
hcf.boot(x1, x2, fc = TRUE, B = 999)
lr.boot(x1, x2, B = 999)
hclr.boot(x1, x2, B = 999)
embed.boot(x1, x2, B = 999)
het.boot(x1, x2, B = 999)
Arguments
x1
A matrix with the data in Euclidean coordinates, i.e. unit vectors.
x2
A matrix with the data in Euclidean coordinates, i.e. unit vectors.
fc
A boolean that indicates whether a corrected F test should be used or not.
B
The number of bootstraps to perform.
Value
A vector including two or three numbers, the test statistic value, the bootstrap p-value of the test and the common concentration parameter kappa based on all the data.
Details
The high concentration (hcf.boot), log-likelihood ratio (lr.boot), high concentration log-likelihood ratio (hclr.boot), embedding approach (embed.boot) or the non equal concentration parameters approach (het.boot) is used.
References
Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.
Rumcheva P. and Presnell B. (2017). An improved test of equality of mean directions for the Langevin-von Mises-Fisher distribution. Australian & New Zealand Journal of Statistics, 59(1), 119-135.